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Introduction: 

 The XFDTD
1
 code produced by REMCOM 

TM
 Corp. is a finite difference time domain 

code used for solution of electromagnetic problems. It has several unique features, including 

dispersive dielectrics, nonlinear dielectrics and magnetic materials, materials with time 

dependent conductivity, as well as lumped circuit elements such as inductors, capacitors and 

resistors. All these features make the code extremely versatile and particularly suited for fully 

electromagnetic pulse power simulations. One of the characteristics of pulse power simulations 

is the long charging time of a circuit and the fast discharge of the circuit. In many cases, only the 

fast discharge needs to be examined from a fully electromagnetic point of view; the charge cycle 

is usually slow and suitably modeled by conventional circuit techniques.  In fact, in many 

simulations, the time scale of the charge and discharge cycle may vary by over three orders of 

magnitude. This poses a problem for efficient modeling of the problem, since in reality it is 

desirable not to model the charge cycle, but only the discharge cycle with the initial conditions 

defining the initial state of the simulation as established by the charge cycle. This was the 

motivation to have a Poisson solver introduced into REMCOM’s XFDTD code. Using this 

feature the initial electric field distribution in the simulation geometry could be determined by 

assigning initial potentials to various conductive structures to set up the initial charge state.  This 

of course meant that there was no initial current flow in the problem, indicating an infinitely long 

charge cycle. This methodology worked extremely well for many of simulation problems. 

However, in the first version of this Poisson solver, conductors with unassigned potentials were 

not allowed; i.e. floating conductors were not allowed. In the latest implementation of the 

Poisson solver floating conductors with unassigned potentials were introduced into the XFDTD 

code. In this report, an investigation of the accuracy of the solver is made for a number of 

representative example geometries in the XFDTD code. To check the validity of the solutions in 

the test cases, comparisons are made with finite element solutions using the electrostatics solvers 

using both the COMSOL
2
 

TM
 multi-physics code and the ANSYS/ANSOFT MAXWELL

3
 

TM
  

code. The test cases are designed to exercise the solver in a variety of situations; 

1) Effect of stair-stepping error introduced by the orthogonal mesh used by XFDTD 

compared with the finite element mesh used by COMSOL and MAXWELL codes. 

2) Performance of Poisson solver depending on PEC or open boundary conditions. 

3) Performance of Poisson solver depending on number of conductors with assigned 

voltages and number of floating conductors. 



4) Performance of Poisson solver depending on thin or thick planar structures. 

5) Accuracy of the Poisson solver depending on whether floating conductors are shielded 

from the outer boundary condition by other conductors. 

It should be noted that the ANSYS/MAXWELL 3D solver does not work with open boundary 

conditions requiring the user to artificially put the outer boundaries sufficiently far from the 

region of interest and set the boundary condition to a zero potential boundary condition. Since 

this method is not well defined, any example that is calculated in unbounded space will exclude 

the ANSYS/MAXWELL 3D solution in the comparison. Also, the MAXWELL 3D solution was 

not used in all cases. Also, the source of errors will be discussed in most cases in qualitative 

general terms, since the purpose of this document is only to provide a guide for the improvement 

of the Poisson solve in the XFDTD code. 

Case 1a) 

 For the first test case we consider a simple 2 mm radius sphere at +1 Volt potential 

centered within a 20 mm spherical shell at zero potential as shown in Fig. 1. 

 

 

 

 

 

Fig. 1: Simple 2 concentric spheres. Inner sphere radius is 2 mm at +1 V potential, outer sphere 

radius is 20 mm and at 0 V. 

A lineout of the potential along the x axis is plotted in Fig. 2a using the results of XFDTD, 

COMSOL MultiPhysics, ANSYS Maxwell 3D, as well as an analytic solution for this case. As 

can be seen in Fig. 2a there is excellent agreement with all three codes and the analytic result 

with typical errors of -.05%, +0.2%, and +1.9% between the MAXWELL, COMSOL, and 

XFDTD with the analytic results respectively. The larger error associated with the XFDTD code 

is primarily due to stair-stepping error in this case. 

Case 1b) 

 For this case we consider a 2 mm sphere at +1 V potential in unbounded space. Figure 2b 

shows the comparison of results for this case with the analytic result. Several different cell sizes 

were used for the XFDTD solution. As can be seen, the COMSOL result agrees extremely well 

with the analytic result with a typical error of less than 0.02%, while the XFDTD results agree 

reasonably well near the sphere but deviate significantly near the outer regions. Errors evaluated 

at a distance of x = 15 mm show relative errors of 70%, 15%, and 40% for XFDTD cubical cell 

x 

y 



sizes of 0.1 mm, 0.2 mm, and 0.075 mm respectively.  Based on the fact that the accuracy is 

reasonable near the sphere and the fact that the results were globally accurate for the sphere 

enclosed in a grounded spherical shell (Case 1a) would indicate that stair-stepping inaccuracies 

are not that significant in this case, and the performance of the open boundary in the XFDTD 

Poisson solver is problematic.  Also, it seems that the accuracy has an oscillatory convergence. 

  
(a) PEC BC (b) Open BC 

Fig. 2: Comparison of XFDTD, COMSOL, MAXWELL, and analytic results for test Case 1a 

and XFDTD, COMSOL, and analytic results for Case 1b. 

 

Case 2a) 

 In this case we consider two 2 mm radius spheres within a 20 mm spherical shell at zero 

potential as shown in Fig. 3. The y and z centers of the conducting spheres are both at zero. The 

x location of the first sphere is at x = -4 mm and at a potential of -1 V and the second sphere as at 

+4 mm with a potential of +1 V.  The outer spherical shell is centered at the origin. 

 

 

 

 

 

Fig. 3: Two 2 mm radius spheres located within 20 mm outer sphere. The two interior spheres 

are centered at -4 mm and + 4mm.  The left sphere is at a potential of -1 V and the right sphere is 

at a potential of +1 V. The outer sphere is at zero potential. 

A lineout of the potential along the x axis is plotted in Figs. 4a using the results of XFDTD, 

COMSOL MultiPhysics, and ANSYS Maxwell 3D. Figure 4a also shows vertical lineouts in y of 

x 

y 



the potential through the centers of the 2 small interior spheres at x = -4 mm and x = +4 mm 

respectively. As can be seen in Figs. 4a there is excellent agreement between all three codes; 

COMSOL and MAXWELL 3D give nearly identical results with typical differences being on the 

order of 2% between COMSOL or MAXWELL 3D and XFDTD. 

Case 2b) 

Case 2b is identical to Case 2a except that the 20 mm conducting shell was removed and 

the two small spheres were located in unbounded space. Figures 4b shows the results for the 

same three lineouts as in Case 2a. Again, there is excellent agreement between COMSOL and 

XFDTD, with typical a typical difference of 2%. The difference provides some insight into the 

performance of the open boundary condition used in Case 1b and Case 2b. Case 1b generated 

fairly inaccurate results compared with Case 2b; the primary difference being that Case 2b had 

balanced potentials on the two spheres while Case 1b has an unbalanced potential. 

Case 3a) 

Case 3a is identical to Case 2a, except that the interior sphere at x = 4 mm is at a potential 

of +2 V. The outer shell is at zero potential. Figures 5a shows the results for the same three 

lineouts as in Case 2a. 

Case 3b) 

 Case 3b is identical to Case 3a, except there is no exterior conducting shell in this case. 

Figures 5b show the results for the same three lineouts as in Case 2a. 

Case 4a) 

 Case 4a is identical to Case 2a, except that the interior sphere at x = -4 mm is at an 

unassigned potential, i.e., the sphere is floated. The interior sphere at x = 4 mm is at a potential 

of +1 V. The outer shell is at zero potential. Figures 6a show the results for the same three 

lineouts as in Case 2a. 

Case 4b) 

 Case 4b is identical to Case 4a, except there is no exterior conducting shell in this case. 

Figures 6b show the results for the same three lineouts as in Case 2a. 

Case 5a) 

 Case 5a is identical to Case 2a, except that the interior sphere at x = +4 mm has a radius 

of 4 mm. The outer shell is at zero potential. Figures 7a show the results for the same three 

lineouts as in Case 2a. 

Case 5b) 

Case 5b is identical to Case 5a, except there is no exterior conducting shell in this case. 

Figures 7b show the results for the same three lineouts as in Case 2a. 
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Fig. 4: Comparison of XFDTD, COMSOL, MAXWELL, and analytic results for test Case 2a 

and XFDTD, COMSOL, and analytic results for Case 2b. 
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Fig. 5: Comparison of XFDTD, COMSOL, MAXWELL, and analytic results for test Case 3a 

and XFDTD, COMSOL, and analytic results for Case 3b. 
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Fig. 6: Comparison of XFDTD, COMSOL, MAXWELL, and analytic results for test Case 4a 

and XFDTD, COMSOL, and analytic results for Case 4b. 
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Fig. 7: Comparison of XFDTD, COMSOL, MAXWELL, and analytic results for test Case 5a 

and XFDTD, COMSOL, and analytic results for Case 5b. 

 

Cases 3 through 5 demonstrated that the XFDTD Poisson solver performed very well with an 

outer PEC boundary and no floating conductors. When a floating conductor was introduced 

localized relative errors on the order of 30% were introduced at or near the floating conductor. 

The solution was still reasonably accurate near conductors with assigned potentials. When an 

open boundary condition was introduced, relative errors on the order of 50% still persisted near 

the outer boundary but the overall error was dramatically increased at and near the floating 

conductor. The size of the interior spheres does not seem to significantly change the relative 

error. 

 



Case 6a) 

 In this case we consider three spheres within a rectangular box as shown in Fig. 8. The 

dimensions of the box are from x = -8 mm to 8 mm, y = -5 mm to 5 mm, and z = -4 mm to 4 

mm. Sphere, S1 has a radius of 1mm, centered at (x,y,z) = (-5,1,0) mm, sphere, S2 has a radius 

of 1 mm, centered at (x,y,z) = (-2,-3,0) mm, and sphere, S3 has a radius of 2mm, centered at 

(x,y,z) = (4,-0.5,0) mm. Sphere 1 is at a potential of -1 V, sphere 2 is at a floating potential, and 

sphere 3 is at a potential of +2 V. The outer rectangular box is at zero potential. Lineouts in x and 

y, through the centers of each of the spheres are shown in Figs. 9a and 10a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8: Three spheres located within rectangular box as described in Case 6a. Lineouts in x and y 

are determined through the x and y centers of each of the three spheres. 

Case 6b) 

 Case 6b is identical to Case 6a except that the conducting rectangular box was removed 

and the three spheres were located in unbounded space. Figures 9b and 10b show the results for 

the same three lineouts as in Case 6a. 

Case 7a) 

 Case 7a is identical to Case 6a except that the three spheres were replaced with cubes 

centered at the same locations as the spheres with their edge lengths being the same as the sphere 

diameters. Maxwell results not available for this case. Figures 11a and 12a show the results for 

the same three lineouts as in Case 6a. 

Case 7b) 

 Case 7b is identical to Case 7a except that the conducting rectangular box was removed 

and the three cubes were located in unbounded space. . Figures 11b and 12b show the results for 

the same three lineouts as in Case 6a. 
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Fig. 9: Comparison of XFDTD, COMSOL, MAXWELL, and analytic results for test Case 6a 

and XFDTD, COMSOL, and analytic results for Case 6b. 
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Fig. 10: Comparison of XFDTD, COMSOL, MAXWELL, and analytic results for test Case 6a 

and XFDTD, COMSOL, and analytic results for Case 6b. 
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Fig. 11: Comparison of XFDTD and COMSOL, for test Case 7a and Case 7b. 
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Fig. 12: Comparison of XFDTD and COMSOL, for test Case 7a and Case 7b. 

 

Cases 6 and 7 again demonstrate that the XFDTD Poisson solver performed very well with an 

outer PEC boundary and no floating conductors. The introduction of a floating conductor again 

introduced large relative errors in the vicinity of the floating conductor and subsequently with the 

introduction of an open boundary condition made the errors significantly worse. As before, the 

solution retained accuracy near the objects with a specified potential. The worst case situation 

would be placing a floating conductor too close to an open boundary condition. Errors were 

comparable between the three sphere cases and the three cube cases indicating that stair-stepping 

error was not the source of the inaccuracies since stair-stepping was not present in the mesh 

associated with the three cube problem. Almost certainly, the open boundary condition and the 

method used to determine the potential of the floating object were the primary source of error. 



Case 8a) 

 In this case we consider three infinitely thin square perfectly conducting plates with an 

edge length of 40 mm. The three plates are located a y = -1, -0.5 and +1 mm.  The plate and -1 

mm and +1 mm are at potential of -1 V and +1 V respectively.  The plate at y = -0.5 mm is 

floated. The three plates are in a perfectly conducting rectangular box at zero potential with 

dimensions of 60 mm in x, 60 mm in z, and 6.6 mm in y with the center of the box at the origin 

as shown in Fig. 13. Lineouts of the potentials along the x axis midway between the plates at y = 

-0.75 mm, y = 0.25 mm, and the y axis at x = 0. The lineout are always in the z = 0 plane. Figure 

14a show the results of these lineouts. 

 

 

 

 

 

 

 

Fig. 13: Three plate capacitor problem described in Case 8a. 

Case 8b) 

 Case 8b is identical to Case 8a except that the conducting rectangular box was removed 

and the three plates were located in unbounded space. Figures 14b show the results for the same 

three lineouts as in Case 8a. 
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Fig. 14: Comparison of XFDTD and COMSOL, for Case 8a and Case 8b. 

 

 

 

 

 

 

 

 

 

 

 



Case 9a) and 9b) 

 In this case we consider a capacitor using multiple interleaved segmented plates in a 

serpentine configuration designed to minimize inductance as shown in Fig. 15. All the plates are 

of zero thickness. This type of capacitor structure is designed to minimize inductance. The 

external connections were set to potentials of -1 V and +1 V. This model was included to 

examine the performance with multiple floating plates. The region indicated in blue is a 

dielectric with a relative dielectric constant of 2000. For Case 9a the capacitor is enclosed in a 

PEC rectangular box and for Case 9b the outer box is removed for a calculation with open 

boundary conditions. 

 

 

Fig 15: Segmented capacitor shown with sample points for evaluating floating potentials. 

 

The dimensions of the dielectric block are 50 mm in x, 50 mm in z, and 10 mm in y.  The origin 

of the coordinate system is in the center of the block. The dimensions of the outer PEC boundary 

for Case 9a are 100 mm in x, 100 mm in z and 40 mm in y. Each of the floating electrodes has 

dimensions of 47 mm in y and 7 mm in x, with 2 mm spacing between electrodes on the same 

layer. Layer to layer spacing is 1 mm. Figure 15 shows the potential distribution in the capacitor. 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Potential distribution in the capacitor. 
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Table 1 shows the values of the floating potentials for Case 9a for COMSOL and XFDTD 

simulations, and Table 2 shows the floating potentials for Case 9b for the COMSOL and XFDTD 

simulations. 

 

Location COMSOL XFDTD Relative Error 

Coordinate Potential (V) Potential (V) Percent % 

R1 – C1 -0.4634 -0.4524 -2.37 

R1 – C2 -0.6779 -0.6717 -0.91 

R1 – C3 -0.7937 -0.7898 -0.49 

R1 – C4 -0.9318 -0.9280 -0.41 

L1 – D1 -0.6899 -0.6885 -0.20 

L1 – D2 -0.4619 -0.4582 -0.80 

L1 – D3 -0.2166 -0.2073 -4.29 

L1 – D4 +0.4850 +0.4930 +1.65 

R2 – C1 +0.2944 +0.3025 +2.75 

R2 – C2 -0.0810 -0.0780 -3.70 

R2 – C3 -0.3576 -0.3600 +0.67 

R2 – C4 -0.7754 -0.7747 -0.09 

L2 – D1 -0.2945 -0.3052 +3.63 

L2 – D2 +0.0810 +0.0753 -7.04 

L2 – D3 +0.3575 +0.3573 -0.06 

L2 – D4 +0.7755 +0.7732 -0.30 

R3 – C1 +0.6899 +0.6866 -0.48 

R3 – C2 +0.4619 +0.4561 -1.26 

R3 – C3 +0.2166 +0.2050 -5.36 

R3 – C4 -0.4847 -0.4947 +2.06 

L3 – D1 +0.4634 +0.4511 -2.65 

L3 – D2 +0.6779 +0.6705 -1.09 

L3 – D3 +0.7937 +0.7886 -0.64 

L3 – D4 +0.9318 +0.9273 -0.48 

 

Table 1: Floating potentials for Case 9a. 

 

 

 

 

 

 

 

 

 

 

 



Location COMSOL XFDTD Relative Error 

Coordinate Potential (V) Potential (V) Percent % 

R1 – C1 -0.4635 -0.4524 -2.39 

R1 – C2 -0.6779 -0.6718 -0.90 

R1 – C3 -0.7937 -0.7901 -0.45 

R1 – C4 -0.9318 -0.9283 -0.38 

L1 – D1 -0.6899 -0.6888 -0.16 

L1 – D2 -0.4619 -0.4585 -0.74 

L1 – D3 -0.2166 -0.2073 -4.29 

L1 – D4 +0.4849 +0.4932 +1.71 

R2 – C1 +0.2945 +0.3028 +2.82 

R2 – C2 -0.0809 -0.0779 -3.71 

R2 – C3 -0.3576 -0.3602 0.73 

R2 – C4 -0.7755 -0.7748 -0.09 

L2 – D1 -0.2944 -0.3053 +3.70 

L2 – D2 +0.0810 +0.0754 -6.91 

L2 – D3 +0.3575 +0.3577 0.06 

L2 – D4 +0.7755 +0.7735 -0.26 

R3 – C1 +0.6899 +0.6870 -0.42 

R3 – C2 +0.4619 +0.4564 -1.19 

R3 – C3 +0.2167 +0.2052 -5.31 

R3 – C4 -0.4847 -0.4947 +2.06 

L3 – D1 +0.4635 +0.4512 -2.65 

L3 – D2 +0.6779 +0.6706 -1.08 

L3 – D3 +0.7936 +0.7889 -0.59 

L3 – D4 +0.9318 +0.9277 -0.44 

 

Table 2: Floating potentials for Case 9b. 

 

Conclusions: 

 A set of benchmark calculations were performed using the COMSOL, MAXWELL_3D, 

and XFDTD electromagnetic software tools to aid in evaluating the performance of the XFDTD, 

static Poisson solver. While not intended to be an exhaustive examination of the codes, the 

various calculations were used to exercise the XFDTD code for a variety of conditions that may 

present themselves to the user. The qualitative observations for the XFDTD Poisson solver are 

summarized below. 

 

1) XFDTD produced reasonable accurate results for all geometries that did not have floating 

conductors or open outer boundary conditions, assuming the mesh had sufficient 

geometric fidelity to resolve the geometrical features of the model. 

2) With the introduction of open outer boundary conditions, and no floating conductors, 

XFDTD   produced reasonably accurate results only in regions sufficiently far from the 

open boundaries. This is a reasonable expectation, since the outer open boundary 



condition in XFDTD is designed for time domain electromagnetic problems, not the 

solution of Laplace’s equation in the domain. 

3) With the introduction of a single floating conductor, significant relative errors occurred in 

the vicinity of the floating conductor, even with PEC boundary conditions, especially if 

the induced potential on the floating conductor was close to zero. 

4) With the introduction of open boundaries and floating conductors inaccuracies were 

significant in the vicinity of the floating conductor especially if the floating conductor 

could “see” the open boundary, i.e. was not shielded from the open boundary by 

conductors with assigned potentials. This result was apparent in the simulation involving 

the three spheres or cubes (Cases 6 and 7). Since the errors were comparable between the 

cases with spheres and the equivalent cases with spheres, it is reasonable to assume that 

the errors were not due to stair-stepping errors and were primarily due to error due to the 

open boundary and errors in determining the induced potential on the floating conductor. 

5) The three plate and multi-plate capacitor performed well with the floating conductors and 

with either PEC or open boundaries since the floating plates were well shielded from the 

outer boundary, and the floating structures were very close to surrounding structures with 

assigned potentials. This produced fairly accurate results for both these cases. 

 

References: 

 

1) XFDTD is a product of REMCOM Inc., 315 South Allen Street, Suite 416, State College, 

PA 16801 USA, www.remcom.com 

2) COMSOL Multiphysics is a product of COMSOL Inc., 1 New England Executive Park, 

Suite 350, Burlington, MA 01803 USA, www.comsol.com 

3) MAXWELL is a product of ANSYS Inc., 275 Technology Drive, Canonsburg, PA 15317 

USA, www.ansys.com 

 

 

 


